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1 Introduction 

This final technical report is a cumulative summary of our group's research accomplishments 

under the AFOSR grant number F49620-92-J-0126. Over the past three years, our work 

has spanned the areas of architectures, operating system policies, performance analysis and 

algorithms for parallel processing. 

In Section 2, we describe what the objectives of this research were. In Section 3, we 

outline our research accomplishments and progress towards achieving the above objectives. 

Section 4 gives a chronological list of papers acknowledging this grant. Section 5 lists the 

graduate students and principal investigator suppported by this grant. In Section 6, we 

mention significant events like promotions and graduations. Finally, professional interactions 

(such as advisory consultations and invited talks) are covered in Section 7. (There are also 

a set of appendices with detailed information on our research, and a set of graphical slides 

to complement the appendices.) 

2 Research Objectives 

Our original proposal (in 1992) raised several problems related to interconnection networks. 

As we went along, it became increasingly clear that various architectures and OS issues 

depend on each other. Problems in one area quickly led to problems in another. Between 

1992 and now, the scope of our work expanded from interconnection networks to span such 

areas as synchronization, performance evaluation, job scheduling and virtual memory. 

One of the larger goals of our research was to demonstrate that there is a middle-ground 

between formal but inapplicable research (which the academia is often accused of), and 

practical but heuristic work (which comes out of the industry). This report describes our 

fruitful collaboration with MasPar Corporation as one example where we successfully found 

this middle-ground. 



3    Research Accomplishments 

This section describes our research accomplishments under the grant. We must restrict 

ourselves to a quick summary here; for more details, the reader is referred to the appendices, 

as specified by the table below: 

Area Research Topic Appendix 

Architecture Design of Data-Routing Network A 

Design of Barrier-Synch Network B 

Performance Evaluation C 

Algorithms Routing Algorithms D 

DP (Numerical) Algorithms E 

Operating Systems Parallel Job Scheduling F 

Parallel Virtual Memory G 

Design of Data-Routing Network: Most commercial massively parallel computers such 

as Cray T3D, Thinking Machines CM-5, use bi-directional networks. However there is 

little insight into why they chose the network that they chose. Chi-Kai Chien's thesis 

developed a comprehensive methodology to answer the above question. 

Design of Barrier-Synchronization Network:    Synchronization barriers are often nested 

within one another due to the control block structure. Past methods implement such 

nested barriers in software. Vara Ramakrishnan has, on the other hand, developed two 

hardware schemes to implement nested barriers — these have the advantage of being 

more than an order of magnitude faster than the software schemes. 

Performance Evaluation: We proposed a new approach to performance evaluation based 

on performance vectors. This approach enables the estimation of detailed machine 

characteristics, rather than naiveMflop ratings, and consequently yields many valuable 

insights into bottlenecks etc.. Umesh Krishnawamy's thesis demonstrates the success 

of this approach on both workstations and supercomputers. 

Routing Algorithms: We developed both on-line and off-line algorithms for a class of 

networks called Expanded Delta Networks (EDN). Since the global router on the Mas- 



Par MP-1 and MP-2 is similar to an EDN, we were able to adapt all of our algorithms 

to it. It turned out that our routing algorithms were significantly better than the ones 

used by MasPar itself; this has resulted in a fruitful collaboration and technology- 

transfer. (A letter from MasPar's Director of Architecture is included as Enclosure 1.) 

This work was by Brian Alleyne and Raghu Subramanian. 

Dynamic Precision Algorithms: Dynamic Precision (DP) numerical algorithms vary 

the precision of data during program execution in order to improve performance. We 

proposed an architecture called P3, whose multigauging abilities make it particularly 

suited to DP algorithms. David Kramer's thesis showed that, by carefully reducing 

the precision of data when safe to do so, one can achieve a 3x speed-up on the average. 

Parallel Job Scheduling: Parallel job scheduling is the problem of how to share a parallel 

machine among several parallel jobs. There are two orthogonal choices — time-slicing 

and space-slicing. Raghu Subramanian's thesis proves that, contrary to popular wis- 

dom, time slicing is the most efficient scheduling policy when jobs arrive and depart 

from the system dynamically. 

Parallel Virtual Memory: Although well understood in traditional operating systems, 

virtual memory is not a reality for parallel computers. Our research attempts to 

understand the parameters that influence the efficacy of virtual memory. Ongoing 

experiments point in the direction of dynamic paging policies. 

4    Papers Acknowledging the Grant 

1. B.D. Alleyne and I.D. Scherson, Expanded Delta Networks for Very Large Parallel 

Networks, Proceedings of the International Conference on Parallel Processing, pp I- 

127-131, August 1992. 

2. C-K. Chien, and I.D. Scherson, Self Routing Least Common Ancestor Networks, Pro- 

ceedings of the Frontiers of Massively Parallel Processing, pp 513-514, October 1992, 

(Poster paper). 



3. B.D. Alleyne and I.D. Scherson, Permutation Routing in 2-Stage Recirculating Delta 

Networks, Proceedings of the Frontiers of Massively Parallel Computation, Vol. 1, pp. 

502-503, October 1992, (Poster Paper). 

4. D.A. Kramer, Efficient Bit-Parallel Supercomputer Architectures and Algorithms, Ph.D. 

Thesis, Princeton University, January 1993. 

5. 4 I.D. Scherson, and C.-K. Chien, Least Common Ancestor Networks, Proceedings of 

the International Parallel Processing Symposium, pp 507-513, April 1993. 

6. 4I.D. Scherson, and R. Subramanian, Efficient Off-line Routing of Permutations on 

Restricted Access Expanded Delta Networks, Proceedings of the International Parallel 

Processing Symposium, pp 284-290, April 1993. 

7. I.D. Scherson and A.S. Youssef (Editors), Interconnection Networks for High-Performance 

Parallel Computers, IEEE Computer Society Press, Los Alamitos, CA, 1994. 

8. B.D. Alleyne and I.D. Scherson, On Evil Twin Networks and the Value of Limited 

Randomized Routing, Proceedings of the Proceedings of the International Parallel Pro- 

cessing Symposium, pages 566-575, April 1994. 

9. R. Subramanian and I.D. Scherson, An Analysis of Diffusive Load Balancing, Pro- 

ceedings of the 6th ACM Symposium on Parallel Algorithms and Architectures, pages 

220-225, June 1994, Cape May, NJ. 

10. B.D. Alleyne, Methodologies for Analysis and Design of Data Routers in Large SIMD 

Computers, Ph.D. Thesis, Princeton University, June 1994. 

11. I.D. Scherson, and C-K. Chien, Least Common Ancestor Networks, VLSI Design, 

Volume 2, Number 4, pages 353-364, April 1995. 

12. V. Ramakrishnan, I.D. Scherson and R. Subramanian, Efficient Techniques for Fast 

Nested Barrier Synchronization, Proceedings of the 7th ACM Symposium on Parallel 

Algorithms and Architectures, pages 157-164, July 1995, Santa Barbara, CA. 

*Due to a clerical error, AFOSR 90-0144 was acknowledged instead of AFOSR F49620-92-J-0126. 



13. F. Chen and V.L.M. Reis and I.D. Scherson, A Study of Parallel Input/Output Sub- 

systems, Proceedings of the Symposium on Advanced Parallel Processsing Technologies, 

September 1995. 

14. C-K. Chien, Bi-directional Interconnection Networks for Massively Parallel Computers, 

Ph.D. Thesis in preparation, University of California at Irvine, September 1995. 

15. U. Krishnaswamy, Computer Evaluation Using Performance Vectors, Ph.D. Thesis in 

preparation, University of California at Irvine, December 1995. 

16. R. Subramanian, A Framework for Parallel Job Scheduling, Ph.D. Thesis in prepara- 

tion, University of California at Irvine, December 1995. 

17. R. Subramanian and I.D. Scherson, Networks for Multiple Disjoint Barrier Synchro- 

nizations, Under submission to the International Parallel Processing Symposium, 1996. 

18. V.L.M. Reis and I.D. Scherson, A Virtual Memory Model for Parallel Supercomputers, 

Under submission to the International Parallel Processing Symposium, 1996 

5    Personnel Supported by the Grant 

Principal investigators: 

• Isaac. D. Scherson 

Graduate students : 

• Chi-Kai Chien — graduated with Ph.D. in September '95 from University of Cali- 

fornia, Irvine. Thesis title: Bi-directional Interconnection Networks for Massively 

Parallel Computers. 

• Umesh Krishnaswamy — expected to graduate with Ph.D. in December '95 from 

University of California, Irvine. Thesis title: Computer Evaluation Using Perfor- 

mance Vectors. 

• Raghu Subramanian — expected to graduate with Ph.D. in December '95 from 

University of California, Irvine. Thesis title: A Framework for Parallel Job 

Scheduling. 
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• Vara Ramakrishnan 

• Shih-Ta Huang 

• Kathryn Morse 

6 Significant Events 

Sep 1995:    Chi-Kai Chien awarded Ph.D. (University of California, Irvine). Thesis title: 

Bi-directional Interconnection Networks for Massively Parallel Computers. 

Jun 1994:    Brian D. Alleyne awarded Ph.D. (Princeton University). Thesis title: Method- 

ologies for Analysis and Design of Data Routers in Large SIMD Computers. 

1994:    P.I. appointed Director, Irvine Research Unit in Advanced Computing, University 

of California, Irvine. 

1994:    P.I. appointed Professor, Information & Computer Science and Electrical &; Com- 

puter Engineering, University of California, Irvine. 

Jan 1993:    David A. Kramer awarded Ph.D. (Princeton University). Thesis title: Efficient 

Bit-Parallel Supercomputer Architectures and Algorithms. 

7 Research Interactions 

7.1     Advisory Consultation 

We pride ourselves for being able to link our basic theoretical research to industrial problems 

of practical importance. For example, 

• MasPar Computer Corporation has used our results in designing the network archi- 

tecture (topology and on-line algorithm) of their next-generation massively parallel 

computer. 



• Furthermore, the off-line routing code that we designed for the MasPar network (see 

Enclosure 2) is now used by MasPar engineers for in-house applications, and has been 

distributed over the Internet to MasPar users in US universities, national laboratories 

and private corporations to help speedup their scientific applications. 

Enclosure 1 is a letter from MasPar attesting to the success and desirability of this tech- 

nology tranfer. 

In addition, in 1993-94, the P.I. served as a consultant to Hughes Research Laboratories 

on the subject of optical interconnects. 

7.2    Distinguished Lectures by P.I. 

Universities: 

University de Lille, France (Jun '93, Dec '94); 

UNAM, Mexico (October '94); 

University of Chile (Jul '93); 

ETCA-Paris, France (Jun '93); 

University of Paris (Jussieu), France (Jun '93); 

University of Wroclaw, Poland (May '93). 

Conferences: 

LATIN'95, Latin American Theoretical INformatics, Chile (April '95); 

XIV International Conference of the Chilean Computer Society, Chile (Nov '94); 

CIIE'94: 1st Interactive Congress on Electronics, Mexico (Oct '94); 

SuperComp 94, Brazil (Sep '94); 

IEEE/USP International Workshop on High Performance Computing, Brazil (Mar '94); 

International Symposium on High Performance Computing, Chile (Dec '93); 

Chilean Workshop on Systems Engineering, Chile (July '93); 

Polish-American Symposium on Models for High Speed Computing, Poland (May '93). 

Industry: 

Thinking Machines Corporation, Cambridge, MA (May '92). 
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7.3    Other Professional Activities of P.I. 

Program Committees: 

Chair, XV International Conference of the Chilean Computer Science Society, Arica, 

Chile (Nov '95) 

Member, PDCS '95, Washington, DC (Oct '95); 

Member, LATIN'95, Chile (Apr '95); 

Member, IPPS '94, Mexico (Apr '94); 

Member, IPPS '93, Newport Beach, CA (Apr '93); 

Workshop Panels: 

Member, IFIP - WG10.3, Concurrent Systems, International Conference on Applica- 

tions in Parallel and Distributed Computing, Venezuela (Apr '94). 

Member, IPPS '92, Los Angeles, CA (Apr '93); 

Chair, Frontiers '92, MD (Oct '92) 

11 



A    Data-Routing Networks 

In bi-directional networks, both network inputs and network outputs are associated with 

the first stage, and messages travel forward to some (possibly intermediate) stage and then 

backwards, so that some stages may be traversed twice. (See Enclosure 3.) 

Many prototype and commercial parallel computers (e.g., the University of Texas TRAC 

1.1 and 2.0 [18, Sec. 7.3,8.2,8.3] and Thinking Machine Corporation's CM-5 [16]) use bi- 

directional networks. However there is little insight into why they chose the network that 

they chose. Why was that particular topology and routing algorithm most appropriate to 

the situation, and no other? 

We developed a methodology to answer the above kind question. The architect starts with 

certain externally imposed design constraints such as the number of processors, the length 

of the messages that will be sent etc.He then follows the steps of the methodology, which is 

a sequence of well-defined analytical and simulations steps. At the end, he will arrive at the 

best network for the given constraints. This process is illustrated in Enclosures 4 and 5. 

The idea behind the methodology is to define a very general design space, and search 

this space for the point of least cost that satisfies all given constraints. This idea is depicted 

in Enclosure 6. Each element of design space is a (topology, routing algorthm) pair. 

We allowed the "topology" component to vary over all Least Common Ancestor Networks. 

(LCANs are an extremely general class of bi-directional networks, and includes (to the best 

of our knowledge) every popular bi-directional network in the literature [15, 16, 18, 25] as 

particular instantiations.) Similarly we let the "routing-algorithm" component vary over 

circuit-switching and worm-hole routing with various buffer sizes. 

Needless to say, such a methodology is a big step forward from ad hoc network design. It 

yields several invaluable insights and design tradeoffs. And it may be used to anwer such non- 

trivial questions as: How should the routing algorithm change if the number of processors 

were to increase, or if the technology suddenly allowed more pins per chip? Further details 

may be found in Chi-Kai Chien's thesis [7]. 

12 



B    Barrier-Synchronization Networks 

Data parallel programs involve a form of synchronization called barrier synchronization: A 

point in the code is designated as a barrier and no processor is allowed to cross the barrier 

until all processors involved in the computation have reached it. Since data parallel programs 

involve frequent barrier synchronizations, a computer intended to run data parallel programs 

must implement them efficiently. For this purpose, current MIMD computers, including the 

CM-5 and T3D, provide a dedicated barrier tree exclusively for barrier synchronizations [8, 

24]. 

Current MIMD computers provide just one barrier tree per user application. However, 

if a data parallel program has control blocks nested within one another, then it requires the 

simultaneous use of more than one barrier synchronization tree, one for each level nesting. 

(In some special cases, the extra barrier trees can be avoided, but this can not be counted 

on.) 

Since providing as many trees as the number of nestings in programs is not feasible 

due to cost constraints, current machines solve this problem by also implementing barriers 

in software (using shared semaphores or complicated message passing protocols). However 

software barriers are usually an order of magnitude slower than hardware barriers. 

We have developed two hardware schemes for supporting nested barriers using only lim- 

ited hardware. The first scheme uses two single-bit-trees to support any number of nested 

barriers. The method relies on code transformations, and it increases the code size. The 

second scheme uses an integer-tree, which requires more expensive hardware, to support 

an exponential number of nested barriers without increasing the code size. With hardware 

currently available on the CM-5, this scheme can support more than four billion levels of 

block-nesting in a code, which is more than will ever be required. 

C    Performance Evaluation 

Benchmark results are often reported in terms of Mflops which help summarize the overall 

performance of the benchmarked machine. However, results in terms of Mflops or benchmark 

13 



wall-clock times do not isolate reasons for good or bad performance, nor do they highlight 

the performance of a machine in specific areas of interest, be it memory access time, cache 

hit rate, time for a floating point add versus multiply, etc. 

In [11] we proposed a methodology to measure detailed machine characteristics with 

minimal effort (see Enclosure 7) 

The basic problem in this approach involves measuring delivered execution times of ma- 

chine instructions by solving a linear system of equations 

Ax   =       t. (1) 

where A = [a,-j] (i = 1,2,..., m, j — 1,2,..., n) (preferably m > n) is the number of 

instructions of type j in the benchmark i and t{ is the execution time of the program i. The 

unknown x can be solved by using various norm minimization techniques like regression, 

optimization using linear programming. Prior work by Bard [4, 5] applied regression to 

estimate the overhead for various services performed by the CP-67 operating system on IBM 

360/67. Our work on measuring the performance of Sun SPARCstations matched Bard's 

findings in most respects. However, they were less than satisfactory. Our experiments and 

simulations showed that the solution obtained using such norm minimization techniques can 

be arbitrarily far from the correct solution. This led us to approach the problem of solving 

Eq. 1 from a different angle [12]. 

We abstract a benchmark by an (n — l)-dimensional hyperplane in üft™, its execution on 

the machine being measured by an operating point which lies on this hyperplane. We can 

estimate the delivered execution time of machine instructions by selecting a representative set 

of intersection points, these points being defined as the points of intersection of n benchmark 

hyperplanes. In 1993-94, we formalized our approach and measured the performance of a 

series of Sun SPARCstations obtaining positive results [12]. 

During 1994-95, performance vectors for the Cray C90 were computed based on the 

Perfect suite of benchmarks. These vectors were used to predict application execution time 

of other applications running on the Cray C90. 

Further, we defined a measure called compliance. The question is given a set of bench- 

14 



marks, how accurately is it possible to compute the performance vectors. This has nothing 

to do with workload that the benchmarks represent. We assume that the benchmarks accu- 

rately represent their respective workloads. The question is given such a set of benchmarks, 

how accurately can performance predictions be made using those benchmarks. We find that 

smaller benchmarks like kernels give more accurate predictions than benchmarks composed 

of applications. This reveals an interesting tradeoff - while application benchmarks best rep- 

resent the workload on a system, kernel benchmarks are best suited for making performance 

predictions. 

Additional details can be found in Umesh Krishnaswamy's thesis [13]. 

D    Routing Algorithms 

Many multistage interconnection networks, such as the Omega Network, the Flip Network, 

the Baseline Network and the Reverse Baseline Network have been studied over the past 40 

years. It turns out that most of these networks are close variants of each other and can be 

viewed as special cases of the Delta Network [19] [14, page 736] [21]. 

In 1991-92 we had proposed a generalization of the traditional Delta Network called the 

Expanded Delta Network (EDN) [2], in which each wire is replicated, so that more than one 

message can travel between adjacent switches simultaneously. EDNs provide multiple paths 

between any input-output pair, which reduces contention within the network. At the same 

time, they retain the nice properties of single-path networks, such as digit controlled self 

routing. 

The global router in the MasPar MP-1 and MP-2 [6] is closely related to the EDN. This 

enabled us to transfer several theoretical results to the MasPar, yielding significant improvements 

upon their methods. 

For instance, MasPar's global router has 3 stages of 64x64 switches. However, the stage 

3 switches are not fully exploited. We pointed out that a simple change in the retirement of 

routing tag digits to the stages allows us to "collapse" stage 3 into stage 2, thus obviating the 

need for the interconnection between stages 2 and 3 and saving the complexity of 1024 wires 

across the backplane.   We also proved that the pruned-down the router has exactly the same 
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average performance as the original one. 

The following sub-sections cover two different kinds of routing algorithms: on-line and off- 

line. In an on-line algorithm, network connections are established on the fly by switches in a 

distributed manner. In an off-line algorithm, network connections are pre-computed (e.g., at 

compile time) by a central controller; off-line algorithms are useful when the communication 

pattern to be routed is known at compile-time. 

D.l    On-line Routing 

An important special case of an EDN is one with only two switch stages. Such a network 

is easy to build, since it partitions naturally and can be realized on a system with processor 

boards that communicate through a back plane without active components on the back plane 

or additional boards to accommodate the network. The global network in the 16K-processor 

MasPar MP-1 and MP-2 is a 2-stage EDN. The results of this subsection apply to 2-stage 

EDNs only. 

• All deterministic on-line algorithms known so far take O(yN) passes in the worst case. 

Although most permutations take much fewer passes, the worst case permutations 

tend occur in real-world applications, and make it impossible to predict running times. 

We have proposed an on-line algorithm whose worst case complexity is only 0(N1^4) 

passes. The algorithm chooses two evil twins cr and r, which are network-realizable 

permutations that are "orthogonal" in some sense. Then the following four steps are 

repeated until all messages have reached their destinations: 

1. Permute the messages according to a. There is no contention in the network in 

this step. 

2. Attempt to send messages to their desired destinations.   Unsuccessful messages 

(due to contention) re-try in subsequent passes. 

3. Permute the messages that remain to be delivered according to T.   There is no 

contention in the network in this step. 

4. Attempt to send the messages to their desired destinations. 

16 



In other words, the algorithm preconditions the routing step with a and r alternately. 

• The randomized on-line algorithm developed in [3] takes only O(log log TV) passes with 

high probability. However, it involves setting each switch randomly and independently, 

which is not practically feasible. For example, it is not reasonable to expect a 64 x 64 

crossbar to select randomly (and uniformly) one out of 64! possible switch settings 

within 50-100 nanoseconds. 

This has led us to consider limited randomization, in which a switch setting is picked 

randomly from a smaller set of choices. We show that if each switch can choose 

only from cyclic shifts, then the above randomized algorithm still takes O(loglogTV) 

passes. In other words, choosing randomly from cyclic shifts is as general as complete 

randomization. 

The efficacy of evil-twin and limited randomization techniques is shown in Enclosures 8,9 

and 10. Further details may be found in Brian Alleyne's thesis [1]. 

These on-line algorithms are directly adaptable to MasPar's global router. Currently their on- 

line algorithm takes 43 passes on the average, and more than 250 passes in the worst case (268 

passes is the worst that we have discovered so far). In contrast, the use of evil twins or limited 

randomization techniques described above reduces the average number of passes to from 43 to 

29 (a 33% improvement), and reduces the worst case so drastically that it is highly improbable 

that any permutation will take more than 50 passes. 

Some of our on-line techniques are being incorporated in the design of MasPar's next- 

generation computer. 

D.2    Off-line Routing 

An off-line algorithm is judged on two counts: the running time, which is the time for the 

algorithm to compute the path for each message; and the routing time, which is the time for 

the messages to move along the paths computed by the algorithm. 

• The running time of our algorithm is 0(TVlogTV) sequentially, and 0(log2 TV) on an 

TV-processor PRAM, where TV is the number of inputs to the EDN under consideration. 

17 



• The routing time of our algorithm is 3 passes, independent of N. This figure reduces 

to 2 passes in the special case of 2-stage EDNs. 

This off-line algorithm is directly applicable to MasPar's global router. We showed that any 

permutation between the processors can be routed across the global router in exactly 32 passes 

even in the worst case [20]. MasPar does not provide any off-line algorithm to compare our results 

against; however, it is worth noting that their on-line algorithm takes 43 passes on the average 

and more than 250 passes in the worst case. 

We coded up the algorithm and it is currently being used by MasPar engineers for in-house 

applications. The code has also been distributed to several MasPar users all over the US. (A a 

copy of the code is included as Enclosure 2.) 

Enclosure 1 is a letter from the Director of Architecture of MasPar, attesting to the success 

and desirability of this technology-transfer. 

E    Dynamic Precision Algorithms 

Most computer systems provide the user with a choice of a few standard floating point pre- 

cisions (e.g. 32 bits and 64 bits) and scientists choose the precision that yields an acceptable 

error in computation. However, it is an overkill to use the same high precision throughout 

the computation. Dynamic Precision (DP) algorithms vary the precision of the data during 

program execution in order to improve performance. 

We proposed dynamic precision versions of numerical algorithms like Runge-Kutta method 

and Muller's method [10]. The algorithms were implemented on various supercomputer ar- 

chitectures such as the the MasPar MP-1 and the Cray Y-MP and we observed speed-ups of 

between 1.5 and 4. 

We also investigated architectures suited to implementing DP algorithms. One such 

architecture is the multigauging architecture, proposed by Snyder [22] and Yang[26]. It has 

the capability to divide its datapath into several datapaths, of smaller word-length, operating 

in parallel. Thus, if an algorithm uses a smaller word-length, then it has a greater number 

of "processors" at its disposal.  When the algorithm requires smaller precision, it will run 
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faster, not only because smaller precision arithmetic is intrinsically faster, but also because 

there are more processors available to complete the computation. 

For lack of a real multigauging machine, we built a simulator for a multigauging machine 

that we proposed called P3. The P3 is multigauging because it allows disjoint blocks of bits 

within a word to be manipulated independently and in parallel. 

When we ran various DP algorithms on the P3 simulator, an average speedup of 3 was 

observed. This work is presented in David Kramer's thesis [9]. 

F    Parallel Job Scheduling 

The central problem considered is how to share a parallel machine among several parallel 

jobs. We call this problem parallel job scheduling. 

The standard way to run several sequential jobs on a uniprocessor is time-slicing or 

preemption. In time-slicing, jobs take turns on the machine, and each time a job gets a turn 

it resumes from where it left off the previous time. 

Time-slicing translates to a parallel setting easily: now parallel jobs take turns using the 

whole parallel machine. In addition, a fundamentally different possibility opens up, called 

space-slicing or partitioning. In space slicing, each job is given a disjoint subset of processors 

for its own dedicated use. (See Enclosure 11.) 

Then, between these two extremes of time- and space-slicing, it is possible to formulate 

countless hybrid policies. To give a very simple example, one might space-slice the machine 

into partitions, and time-slice each partition among several jobs. 

Faced with this gamut of possibilities, it is not at all clear which scheduling policy is best. 

Enclosure 12 shows the scheduling policies adopted by several commercial and proposed 

(paper) systems. The horizontal axis of the table indicates whether or not time-slicing is 

used; and if so, which variation — gang or local (for now it does not matter what these 

terms mean). The vertical axis of the table indicates whether or not space-slicing is used; 

and if so, which variation — static or dynamic. We draw your attention to the fact that all 

nine cells of the table are occupied by some system or the other, indicating that for each 

19 



scheduling policy there is some company or research group that thinks it is a good idea. In 

short, there is a total lack of consensus on which scheduling policy is best. 

It is this problem of finding the best scheduling policy that we address. We demonstrate 

two main results: 

• For static workloads, in which the set of jobs is constant (i.e., all jobs are available at 

the very beginning, and run for a very long time), the best scheduling policy is pure 

space-slicing. 

• For dynamic workloads, in which the set of jobs varies with time and there is no 

advance knowledge of when jobs will arrive and how long they will run, the best 

scheduling policy is pure time-slicing. 

This is, of course, a simplified phrasing of results. We have left out several details, such as 

the model used for jobs and machines, and several other assumptions, simplifications, clarifi- 

cations, etc. The development of these results in full detail, as well many interesting problems 

that branch off from this work my be found in Raghu Subramanian's dissertation [23]. 

G    Parallel Virtual Memory 

Although well understood in traditional operating systems, virtual memory is not a reality 

for Massively Parallel computers. 

We are experimenting with two classes of paging policies: static and dynamic. In the 

static case, each PE is responsible for a fixed subset of pages. Whenever anybody faults on 

a page allocated to PE i, then it is PE i's responsibility to fetch the page from disk. In the 

dynamic case, each PE is responsible for whatever pages happen to be in its memory at that 

time — thus ownership of pages changes over time. Each PE services its own page faults. 

However the changing ownership of a page makes it difficult to track the location of a page 

when it is needed. (The dynamic page scheme is an extension of Kai Li's virtual shared 

memory [17].) 

Results obtained thus far point to the dynamic policy as a better choice overall. 
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